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Abstract

The Runge–Kutta discontinuous Galerkin (RKDG) method for solving hyperbolic conservation laws is a high order
finite element method, which utilizes the useful features from high resolution finite volume schemes, such as the exact
or approximate Riemann solvers, TVD Runge–Kutta time discretizations, and limiters. In this paper, we investigate using
the RKDG finite element method for compressible two-medium flow simulation with conservative treatment of the moving
material interfaces. Numerical results for both gas–gas and gas–water flows in one-dimension are provided to demonstrate
the characteristic behavior of this approach.
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1. Introduction

In this paper, we investigate using the Runge–Kutta discontinuous Galerkin (RKDG) finite element
method for compressible two-medium flow simulation in one-dimensional case.
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The first discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill [28], in the frame-
work of neutron transport (steady-state linear hyperbolic equations). A major development of the DG method
was then carried out by Cockburn et al. in a series of papers [11,10,9,8,12], in which they established a frame-
work to easily solve the nonlinear time dependent hyperbolic conservation laws:
ut þr � f ðuÞ ¼ 0

uðx; 0Þ ¼ u0ðxÞ

�
ð1:1Þ
using an explicit, nonlinearly stable high order Runge–Kutta time discretizations [30] and DG discretization in
space with exact or approximate Riemann solvers as interface fluxes and limiters such as the total variation
bounded (TVB) limiters [29] or weighted essential non-oscillatory (WENO) type limiters [26,27], to achieve
non-oscillatory properties for strong shocks. These schemes are termed RKDG methods. RKDG methods
have been widely applied and performed very well to solve the single-medium compressible flow.

A relatively dominant difficulty for simulating compressible two-medium flow is the treatment of moving
material interfaces and their vicinities. Nonphysical oscillations usually occur in the vicinity of the material
interface when a well-established numerical method for single-medium flow is directly applied to multi-med-
ium flow. In the literature there are some methods developed to overcome this difficulty [19,17,1,7,21,2,4].

The ghost fluid method (GFM) developed by Fedkiw et al. [13] has provided an attractive and flexible way
to treat the two-medium flow. The main appealing features of the GFM are its simplicity, easy extension to
multi-dimensions and maintenance of a sharp interface without smearing. The GFM makes the interface
‘‘invisible’’ during computations by defining ghost cells and ghost fluids, and the computations are then car-
ried out as for a single-medium manner via solving two respective single-medium GFM Riemann problems.
As such, its extension to multi-dimensions becomes fairly straightforward. Since only single-fluid flux formu-
lations are required to make GFM workable, the GFM is easily employed for two fluids of vastly different
types such as a compressible-incompressible or viscous-inviscid two-fluid flow [5]. Variants of the original
GFM [14] and other applications can also be found in [2,18]. Recently, efforts have also been made to develop
a conservative GFM as found in [15,3].

On the other hand, it is precisely the manner of treatment of the single medium across the interface in the
GFM that may cause numerical inaccuracy when there is a strong shock wave interacting with the interface
[23]; this is especially so if such wave interaction with the interface is not taken into account properly in the
definition of the ghost fluid state. This situation arises because the pattern of shock refraction at a material
interface and the resultant interfacial status depend highly on material properties on both sides of the inter-
face. As such, reasonable ghost fluid states have to be formulated to take into account the influence of both
material properties and wave interaction with the interface. This has led to the development of a modified
GFM (MGFM) with a predicted ghost fluid status by Liu et al. [23] via implicitly solving two non-linear char-
acteristic equations interacting and applicable at the interface [21,22]. In fact, it has been found that Condi-
tions have to be satisfied for the ghost fluid state in order that the two GFM Riemann provides the correct
solution in the respective real fluids [20]. Those techniques developed in [21,22] will also be used to calculate
the flow interface state in the multi-medium RKDG algorithm as proposed in this work.

In general, algorithms proposed for solving two-medium compressible flow consist of two parts. One is the
method for solving the single-medium flow and the other is to treat the interface of the two fluids. In [13,5,14],
the 3rd order ENO methods are used together with the GFM for treating the interface, while the Godunov-
type or MUSCL (monotone upwind schemes for conservation laws) are used in [1,2,21,22,4,23,20].

In this paper our intent is to investigate using the RKDG finite element method for multi-medium flow
simulations in one-dimensional case. Similar to the above-mentioned algorithms developed for multi-med-
ium compressible flows, the present method to be proposed also consists of two parts. One is the usual
RKDG algorithm applicable for the flow field away from the material interface; the other is the newly
developed DG technique for treating the moving interface. In Section 2, we first briefly review the usual
RKDG method over a fixed and regular mesh system, and then we describe in detail the extension of
the DG to treat the moving material interfaces conservatively. Extensive numerical results are presented
in Section 3 to illustrate the characteristic behavior of the RKDG method presented in Section 2. Conclud-
ing remarks are given in Section 4.
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2. Implementation of RKDG methods for two-medium flow simulations

In this section, we describe in detail the construction and implementation of RKDG methods for two-med-
ium inviscid compressible flow simulations. We consider the one-dimensional Euler equation
ut þ f ðuÞx ¼ 0; ð2:1Þ
with
u ¼ ðq;m;EÞT; f ðuÞ ¼ ðm;mvþ p; vðE þ pÞÞT:
Here q is the density, v is the velocity, m = qv is the moment, E is the total energy and p is the pressure which is
related to the total energy by E ¼ qeþ 1

2
qv2, where e is the specific internal energy per unit mass. For closure

of the system, the equation of state (EOS) is required. The c-law used for gases is given as
qe ¼ p=ðc� 1Þ ð2:2Þ
and Tait EOS used for the water medium [6,13,21] is expressed as:
qe ¼ ðp þ NBÞ=ðN � 1Þ; ð2:3Þ
where B ¼ B� A, N = 7.15, A = 1.0E5 Pa, B = 3.31E8 Pa and q0 = 1000.0 kg/m3.
2.1. Description of RKDG methods

The computational domain is divided into N cells with boundary points a ¼ x1
2
< x3

2
< � � � < xNþ1

2
¼ b. We

denote the cells by I i ¼ xi�1
2
; xiþ1

2

h i
, the cell centers by xi ¼ 1

2
xi�1

2
þ xiþ1

2

� �
and the cell sizes by Dxi ¼ xiþ1

2
� xi�1

2
,

h = infiDxi. The solution as well as the test function space is given by V k
h ¼ fp : pjI i

2 P kðI iÞg, where Pk(Ii) is
the space of polynomials of degree 6k on the cell Ii. We adopt a local orthogonal basis over Ii,
f/ðiÞl ðxÞ; l ¼ 0; 1; . . . ; kg, namely the scaled Legendre polynomials:
/ðiÞ0 ðxÞ ¼ 1; /ðiÞ1 ðxÞ ¼
x� xi

Dxi=2
; /ðiÞ2 ðxÞ ¼

x� xi

Dxi=2

� �2

� 1

3
; � � �
The numerical solution uh(x, t) of Eq. (2.1) in the test function space V k
h can then be written as
uhðx; tÞ ¼
Xk

l¼0

uðlÞi ðtÞ/
ðiÞ
l ðxÞ; for x 2 I i ð2:4Þ
and the degrees of freedom uðlÞi ðtÞ are the moments defined by
uðlÞi ðtÞ ¼
1

al

Z
I i

uhðx; tÞ/ðiÞl ðxÞdx; l ¼ 0; 1; . . . ; k;
where al ¼
R

I i
ð/ðiÞl ðxÞÞ

2 dx are the normalization constants since the basis is not orthonormal. In order to deter-
mine the approximate solution, we need to evolve the moments uðlÞi . By substituting (2.4) into Eq. (2.1), and
multiplying (2.1) with a test function /ðiÞl ðxÞ, integrating over a cell Ii and integrating by parts, we can obtain
the governing equations for the moments as
d

dt
uðlÞi þ

1

al
�
Z

I i

f ðuhðx; tÞÞ d

dx
/ðiÞl ðxÞdxþ f ðuhðxiþ1=2; tÞÞ/ðiÞl ðxiþ1=2Þ � f ðuhðxi�1=2; tÞÞ/ðiÞl ðxi�1=2Þ

� �
¼ 0;

l ¼ 0; 1; . . . ; k: ð2:5Þ
Eq. (2.5) has to be solved approximately. In order to enforce the entropy condition, the flux f(uh(xi+1/2, t)) is
usually approximated using a monotone numerical flux f̂ ðu�iþ1=2; u

þ
iþ1=2Þ, resulting in a semi-discretization

scheme as
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d

dt
uðlÞi þ

1

al
�
Z

I i

f ðuhðx; tÞÞ d

dx
/ðiÞl ðxÞdxþ f̂ ðu�iþ1=2; u

þ
iþ1=2Þ/

ðiÞ
l ðxiþ1=2Þ � f̂ ðu�i�1=2; u

þ
i�1=2Þ/

ðiÞ
l ðxi�1=2Þ

� �
¼ 0;

l ¼ 0; 1; . . . ; k; ð2:6Þ
where u�iþ1=2 ¼ uhðx�iþ1=2; tÞ are the left and right limits of the discontinuous solution uh at the cell interface xi+1/2,
f̂ ðu�; uþÞ is a monotone flux (non-decreasing in the first argument and non-increasing in the second argument)
for the scalar case and an exact or approximate Riemann solver for the system case. In this work, the simple
Lax–Friedrichs flux is used, which is given as
f̂ ðu�; uþÞ ¼ 1

2
½ðf ðu�Þ þ f ðuþÞÞ � aðuþ � u�Þ�;
where a is taken as an upper bound for the absolute value of eigenvalues of the Jacobian for the system case.
The integral term in (2.6) can be computed either exactly or by a suitable numerical quadrature accurate to at
least OðDxkþlþ2

i Þ. In this paper, we use three and four point Gauss–Lobatto quadrature for P1 and P2 cases,
respectively.

The semi-discrete scheme (2.6) can be generalized as
ut ¼ LðuÞ;

which is discretized in time by a Runge–Kutta time discretization, e.g. the third-order version [30]:
uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ 3

4
un þ 1

4
uð1Þ þ 1

4
DtLðuð1ÞÞ;

unþ1 ¼ 1

3
un þ 2

3
uð2Þ þ 2

3
DtLðuð2ÞÞ:

ð2:7Þ
If there are strong discontinuities in the solution, the scheme (2.7) generates significant oscillations and even
nonlinear instability. To avoid such difficulties, typically a slope limiter is used after each Runge–Kutta inner
stage (or after the complete Runge–Kutta time step) to control the numerical oscillations. The limiter adopted
in [10] is described below in some detail. We denote
u�iþ1=2 ¼ uð0Þi þ ~ui; uþi�1=2 ¼ uð0Þi � ~~ui:
Here
~ui ¼
Xk

l¼1

uðlÞi /ðiÞl ðxiþ1=2Þ; ~~ui ¼ �
Xk

l¼1

uðlÞi /ðiÞl ðxi�1=2Þ:
~ui and ~~ui are modified by either the standard minmod limiter [16]
~uðmodÞ
i ¼ mð~ui;Dþuð0Þi ;D�uð0Þi Þ; ~~uðmodÞ

i ¼ mð~~ui;Dþuð0Þi ;D�uð0Þi Þ;

where m is given by
mða1; a2; . . . ; anÞ ¼
s � min

16j6n
jajj if signða1Þ ¼ signða2Þ ¼ � � � ¼ signðanÞ ¼ s;

0 otherwise;

(
ð2:8Þ
or the TVB modified minmod function [29]
~mða1; a2; . . . ; anÞ ¼
a1 if ja1j 6 Mh2;

mða1; a2; . . . ; anÞ otherwise;

(
ð2:9Þ
where M > 0 is a constant dependent on solution of the problem.
For the system cases, in order to achieve better qualities at the price of more complicated computations, the

limiter is always used with a local characteristic field decomposition; see, e.g. [9] for details.
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Let x = x*(tn) be the interface of two different fluids at t = tn, and x*(tn) 2 Ij; then we evolve (2.6) for Fluid I
from i = 1 to j � 2 and for Fluid II from i = j + 2 to N, respectively. The computation for cells next to the
interface will be described in detail in the next subsection.

2.2. Description of treatment of interface cell

We use the level set method to compute the location of the interface x*(tn+1) at t = tn+1 based on the data at
t = tn. We will not repeat the level set technique here. One may refer to [25,24,13,21] for the details of level set
methods.

Next, we present the method to obtain the solution for the cells next to the interface based on conservation
laws. To avoid too small spatial step size, we merge cells Ij�1, Ij and Ij+1 to form two new interface cells occu-
pied by Fluid I and Fluid II, respectively, namely, cell [xj�3/2,x*(t)] occupied by Fluid I and cell [x*(t), xj+3/2]
occupied by Fluid II. We can construct a DG algorithm for Fluid I over interval [xj�3/2,x*(t)] and for Fluid II
over interval [x*(t),xj+3/2] by the following formulae, respectively
d

dt

Z x�ðtÞ

xj�3=2

uðx; tÞ/ðjÞl ðxÞdx ¼
Z x�ðtÞ

xj�3=2

ouðx; tÞ
ot

/ðjÞl ðxÞdxþ dx�ðtÞ
dt

uðx�ðtÞ; tÞ/ðjÞl ðx�ðtÞÞ

¼ �
Z x�ðtÞ

xj�3=2

of ðuðx; tÞÞ
ox

/ðjÞl ðxÞdxþ dx�ðtÞ
dt

uðx�ðtÞ; tÞ/ðjÞl ðx�ðtÞÞ

¼ � f ðuðx�ðtÞ; tÞÞ � dx�ðtÞ
dt

uðx�ðtÞ; tÞ
� �

/ðjÞl ðx�ðtÞÞ þ f ðuðxj�3=2; tÞÞ/ðjÞl ðxj�3=2Þ

þ
Z x�ðtÞ

xj�3=2

f ðuðx; tÞÞ d

dx
/ðjÞl ðxÞdx; l ¼ 0; 1; . . . ; k: ð2:10Þ

d

dt

Z xjþ3=2

x�ðtÞ
uðx; tÞ/ðjÞl ðxÞdx ¼

Z xjþ3=2

x�ðtÞ

ouðx; tÞ
ot

/ðjÞl ðxÞdx� dx�ðtÞ
dt

uðx�ðtÞ; tÞ/ðjÞl ðx�ðtÞÞ

¼ �
Z xjþ3=2

x�ðtÞ

of ðuðx; tÞÞ
ox

/ðjÞl ðxÞdx� dx�ðtÞ
dt

uðx�ðtÞ; tÞ/ðjÞl ðx�ðtÞÞ

¼ f ðuðx�ðtÞ; tÞÞ � dx�ðtÞ
dt

uðx�ðtÞ; tÞ
� �

/ðjÞl ðx�ðtÞÞ � f ðuðxjþ3=2; tÞÞ/ðjÞl ðxjþ3=2Þ

þ
Z xjþ3=2

x�ðtÞ
f ðuðx; tÞÞ d

dx
/ðjÞl ðxÞdx; l ¼ 0; 1; . . . ; k: ð2:11Þ
In order to discretize Eqs. (2.10) and (2.11), we assume the numerical solution of u(x, t) over the interface
cell [xj�3/2,x*(t)] for Fluid I as uh

I ðx; tÞ ¼
Pk

m¼0uðmÞI ðtÞ/ðjÞm ðxÞ, and over the interface cell [x*(t), xj+3/2] for Fluid II
as uh

IIðx; tÞ ¼
Pk

m¼0uðmÞII ðtÞ/ðjÞm ðxÞ. Here the base functions f/ðjÞl g are extended to be valid also over cell
[xj�3/2,xj+3/2]. This results in the non-orthogonality of base functions f/ðjÞl g in the interval [xj�3/2,x*(t)] and

in [x*(t), xj+3/2]. Substituting uh
I ðx; tÞ ¼

Pk
m¼0uðmÞI ðtÞ/ðjÞm ðxÞ into (2.10), and uh

IIðx; tÞ ¼
Pk

m¼0uðmÞII ðtÞ/ðjÞm ðxÞ into
(2.11), we obtain:
d�uðlÞI

dt
¼ �f �ðuIðx�ðtÞ; tÞÞ/ðjÞl ðx�ðtÞÞ þ f ðuh

I ðxj�3=2; tÞÞ/ðjÞl ðxj�3=2Þ þ
Z x�ðtÞ

xj�3=2

f ðuh
I ðx; tÞÞ

d

dx
/ðjÞl ðxÞdx;

l ¼ 0; 1; . . . ; k: ð2:12Þ
and
d�uðlÞII

dt
¼ �f ðuh

IIðxjþ3=2; tÞÞ/ðjÞl ðxjþ3=2Þ þ f �ðuIIðx�ðtÞ; tÞÞ/ðjÞl ðx�ðtÞÞ þ
Z xjþ3=2

x�ðtÞ
f ðuh

IIðx; tÞÞ
d

dx
/ðjÞl ðxÞdx;

l ¼ 0; 1; . . . ; k:

ð2:13Þ
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respectively. Here, �uðlÞI ¼
R x�ðtÞ

xj�3=2
uh

I ðx; tÞ/
ðjÞ
l ðxÞdx, �uðlÞII ¼

R xjþ3=2

x�ðtÞ uh
IIðx; tÞ/

ðjÞ
l ðxÞdx, and f �ðuðx�ðtÞ; tÞÞ¼f ðuðx�ðtÞ; tÞÞ�

dx�ðtÞ
dt uðx�ðtÞ; tÞ: The ODE system (2.12) and (2.13) can be numerically solved using (2.7) once we know how to

evaluate the right hand sides of both (2.12) and (2.13).
Below are listed the details of evaluating the right hand sides of (2.12) and (2.13).

1. We replace the fluxes f ðuh
I ðxj�3=2; tÞÞ and f ðuh

IIðxjþ3=2; tÞÞ with numerical fluxes (here, the Lax–Friedrichs

flux) f̂ ðu�j�3=2; u
þ
j�3=2Þ and f̂ ðu�jþ3=2; u

þ
jþ3=2Þ, which are the same as those in (2.6) computed in the single

medium for Fluid I and for Fluid II, respectively.

2. We solve a multi-medium Riemann problem defined at the interface with status u�(x*(t), t) on the left of
the interface for Fluid I and u+(x*(t), t) on the right for Fluid II to obtain numerical flux at the inter-
face of two fluids. For example, for Euler equation (2.1), we adopted the Riemann problem solver
developed in [21,23] to solve the multi-medium Riemann problem to get pressure p(x*(t)) and velocity
v(x*(t)) at the interface which are assumed to be continuous across the interface. In Euler equation, we
have
dx�ðtÞ
dt
¼ vðx�ðtÞ; tÞ:
Then the numerical flux at the interface of two fluids can be written as:
f̂ � ¼ ð0; pðx�ðtÞÞ; pðx�ðtÞÞvðx�ðtÞÞÞT:

This flux at the interface is used for computation in both interface cells for Fluid I and Fluid II.
3. The spatial integral terms on the right hand sides of (2.12) and (2.13) are computed by the three and four

point Gauss–Lobatto quadrature for P1 and P2 cases, respectively.

Remark. The formula of treatment of interface cells is conservative. Summing the numerical formulae (2.12)
and (2.13) for l = 0 we can obtain:
d

dt

Z xjþ3=2

xj�3=2

uðx; tÞdx ¼ d�uð0ÞI

dt
þ d�uð0ÞII

dt
¼ f̂ ðu�j�3=2; u

þ
j�3=2Þ � f̂ ðu�jþ3=2; u

þ
jþ3=2Þ: ð2:14Þ
It is clear that the formula (2.14) is conservative.

The distance of the interface travelling at every time step is less than CFL Æ h, where CFL is the CFL num-
ber. After each time step, there are three possible locations for the interface: case 1 where x*(tn+1) 2 Ij, case 2
where x*(tn+1) 2 Ij+1 and case 3 where x*(tn+1) 2 Ij�1.

For case 1, the interface is still in the same cell as the previous time step, there is no additional treatment
made to the interface cells.

For case 2, the interface has crossed the cell boundary x = xj+1/2 as time progresses from tn to tn+1. Cell Ij�1

will then be computed as a normal cell using the usual RKDG algorithm at the next time step, while cells Ij,
Ij+1 and Ij+2 will be treated as interface cells and calculated using the newly developed formula (2.12) and
(2.13). We first split the interface cell [xj�3/2,x*(tn+1)] for Fluid I into a normal cell Ij�1 and a new interface

cell [xj�1/2,x*(tn+1)]. Then the solution, uh
I ðx; tnþ1Þ ¼

Pk
m¼0uðmÞI ðtnþ1Þ/ðjÞm ðxÞ; x 2 ½xj�3=2; x�ðtnþ1Þ�, is mapped

to the cell Ij�1 to obtain uh
j�1ðx; tnþ1Þ ¼

Pk
m¼0uðmÞj�1ðtnþ1Þ/ðj�1Þ

m ðxÞ; x 2 ½xj�3=2; xj�1=2� and to the new interface cell

[xj�1/2,x*(tn+1)] to obtain uh
I;newðx; tnþ1Þ ¼

Pk
m¼0uðmÞI;newðtnþ1Þ/ðjþ1Þ

m ðxÞ; x 2 [xj�1/2,x*(tn+1)]. More specifically, the

moments uðlÞj�1ðtnþ1Þ and uðmÞI;newðtnþ1Þ are obtained using the following expressions, respectively, as
ðuð0Þj�1; � � � ; u
ðkÞ
j�1Þ

T ¼ M�1ðb0; � � � ; bkÞT; M ¼ ðmstÞðkþ1Þ�ðkþ1Þ;

mst ¼
Z

Ij�1

/ðj�1Þ
s ðxÞ/ðj�1Þ

t ðxÞdx; bs ¼
Z

Ij�1

uh
I ðx; tnþ1Þ/ðj�1Þ

s ðxÞdx; s; t ¼ 0; . . . ; k;
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and
ðuð0ÞI;new; � � � ; u
ðkÞ
I;newÞ

T ¼ M�1ðb0; � � � ; bkÞT; M ¼ ðmstÞðkþ1Þ�ðkþ1Þ;

mst ¼
Z x�ðtnþ1Þ

xj�1=2

/ðjþ1Þ
s ðxÞ/ðjþ1Þ

t ðxÞdx; bs ¼
Z x�ðtnþ1Þ

xj�1=2

uh
I ðx; tnþ1Þ/ðjþ1Þ

s ðxÞdx; s; t ¼ 0; . . . ; k:
At the same time, we merge the old interface cell [x*(tn+1),xj+3/2] (where the solution is

uh
IIðx; tnþ1Þ ¼

Pk
m¼0uðmÞII ðtnþ1Þ/ðjÞm ðxÞ) with the normal cell [xj+3/2,xj+5/2] (over which the solution is

uh
jþ2ðx; tnþ1Þ ¼

Pk
m¼0uðmÞjþ2ðtnþ1Þ/ðjþ2Þ

m ðxÞ), into a new interface cell [x*(tn+1),xj+5/2] for Fluid II and conservatively

construct the solution over it as
uh
II;newðx; tÞ ¼

Xk

m¼0

uðmÞII;newðtnþ1Þ/ðjþ1Þ
m ðxÞ; x 2 ½x�ðtnþ1Þ; xjþ5=2�:
Here,
ðuð0ÞII;new; � � � ; u
ðkÞ
II;newÞ

T ¼ M�1ðb0; � � � ; bkÞT;

M ¼ ðmstÞðkþ1Þ�ðkþ1Þ;mst ¼
Z xjþ5=2

x�ðtnþ1Þ
/ðjþ1Þ

s ðxÞ/ðjþ1Þ
t ðxÞdx;

bs ¼
Z xjþ3=2

x�ðtnþ1Þ
uh

IIðx; tnþ1Þ/ðjþ1Þ
s ðxÞdxþ

Z xjþ5=2

xjþ3=2

uh
jþ2ðx; tnþ1Þ/ðjþ1Þ

s ðxÞdx; s; t ¼ 0; . . . ; k:
For case 3, the interface has crossed the cell boundary x = xj�1/2 as time progresses from tn to tn+1. Cell Ij+1

will be recovered as a normal cell using the usual RKDG algorithm at the next step of computation, while cells
Ij�2, Ij�1 and Ij will be merged and calculated using the newly developed formula (2.12) and (2.13). We split the
interface cell [x*(tn+1), xj+3/2] for Fluid II into a normal cell Ij+1 and a new interface cell [x*(tn+1),xj+1/2] and
then merge the interface cell [xj�3/2,x*(tn+1)] with cell [xj�5/2,xj�3/2] to form a new interface cell [xj�5/2,x*(tn+1)]
for Fluid I. The solution over the recovered cell Ij+1 and the new interface cell can be obtained similarly as for
case 2.
3. Numerical results

In this section, we present the results of our numerical experiments for the RKDG schemes described in
section 2 for both single-medium and two-medium flows. In this paper, the CFL numbers are taken as 0.3
and 0.18 for RKDG2 (k = 1)and RKDG3 (k = 2), respectively. Unfortunately, the TVB limiter constant M

is dependent on the problem, there is no an automatic switching which works well for various situations.
As it was pointed out in [9], the resolution of solution is dependent on the choice of constant M; and some-
times, the case of k = 1 may give better resolution to shock or contact discontinuous than the case of k = 2;
this can also be seen in our numerical tests. We have experimented and settled on the following procedure:
instead of using a constant M, we use two constants as denoted by M1 for the interface cells limiting procedure
and the other M2 for the limiting procedure for cells away from the interface, and choose M1 and M2 by trial
and error in this paper.

3.1. Numerical tests for single-medium flows

In this subsection, we first test the accuracy of the schemes on linear scalar problems, nonlinear scalar
problems and nonlinear systems. We only show the results of nonlinear scalar and nonlinear system prob-
lems to save space. We define the standard L1 and L1 error norms by sampling the errors at 20 equally
spaced points inside each cell, emulating the L1 and L1 norms of the error function which is defined
everywhere.
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Example 3.1. We solve the following nonlinear scalar Burgers equation
Table
ut þ u

�
N

10
20
40
80

160
320

L1 and

Table
ut þ u

�
N

10
20
40
80

160
320

L1 and
ut þ
u2

2

� �
x

¼ 0 ð3:1Þ
with the initial condition u(x, 0) = 0.5 + sin(px), with 2-periodic boundary conditions. The initial artificial
interface is located at x = 0.5, and the artificial interface is moving at randomly perturbing the length within
20% of cell length at every time step because of the restriction of the CFL condition.

When t = 0.5/p the solution is still smooth, and the errors and numerical orders of accuracy are shown in
Tables 3.1 and 3.2. We can see that both the schemes for k = 1 (second-order) and k = 2 (third-order)
essentially achieve their designed order of accuracy.

Example 3.2. We solve the following nonlinear system of Euler equations
ut þ f ðuÞx ¼ 0 ð3:2Þ

with
u ¼ ðq; qv;EÞT; f ðuÞ ¼ ðqv; qv2 þ p; vðE þ pÞÞT:

Here E is the total energy given by E ¼ p

c�1
þ 1

2
qv2 with c = 1.4. The initial condition is set to be q(x, 0) =

1 + 0.2sin(px), v(x, 0) = 1, p(x, 0) = 1, with 2-periodic boundary conditions. The exact solution is
q(x, t) = 1 + 0.2sin(p(x � t)), v = 1, p = 1. The initial artificial interface is located at x = 0.5, and the artificial
interface is again moving at randomly perturbing the length within 20% of cell length at every time step. We
compute the solution up to t = 2. The errors and numerical orders of accuracy are shown in Tables 3.3 and
3.4. We can also see that both the schemes for k = 1 (second-order) and k = 2 (third-order) have achieved their
designed order of accuracy.

Example 3.3. We solve the same nonlinear Burgers Eq. (3.1) as in Example 3.1 with the same initial condition
u(x, 0) = 0.5 + sin(px), except that we now plot the results at t = 1.5/p when a shock has already appeared in
the solution. The initial artificial interface is located at x = 0.5, and the artificial interface is moving at ran-
domly perturbing the length within 20% of cell length at every time step. In Fig. 3.1, the solutions for
k = 1 (left) and k = 2 (right) with N = 80 grid points are shown. The solid line is the exact solution. We
can see that the schemes give good shock transitions even when limiter is not applied.
3.1
2

2

�
x
¼ 0, u(x, 0) = 0.5 + sin(px), with periodic boundary conditions, t = 0.5/p

L1 error L1 order L1 error L1 order

1.82E � 02 1.02E � 01
4.84E � 03 1.91 3.79E � 02 1.42
1.20E � 03 2.01 1.10E � 02 1.79
3.11E � 04 1.95 2.90E � 03 1.92
7.83E � 05 1.99 7.47E � 04 1.96
1.95E � 05 2.00 1.89E � 04 1.98

L1 errors, k = 1.

3.2
2

2

�
x
¼ 0, u(x, 0) = 0.5 + sin(px), with periodic boundary conditions, t = 0.5/p

L1 error L1 order L1 error L1 order

7.85E � 03 6.15E � 02
3.25E � 04 4.59 4.61E � 03 3.74
3.67E � 05 3.15 7.61E � 04 2.60
4.34E � 06 3.08 1.07E � 04 2.84
5.06E � 07 3.10 1.46E � 05 2.86
6.39E � 08 2.99 1.92E � 06 2.93

L1 errors, k = 2.



Table 3.3
Euler equations

N L1 error L1 order L1 error L1 order

10 8.09E � 03 2.09E � 02
20 1.17E � 03 2.79 4.04E � 03 2.37
40 2.52E � 04 2.21 8.08E � 04 2.32
80 5.72E � 05 2.14 2.13E � 04 1.92

160 1.33E � 05 2.10 4.99E � 05 2.10
320 3.11E � 06 2.10 1.08E � 05 2.21

q(x,0) = 1 + 0.2sin(px), v(x, 0) = 1, p(x, 0) = 1, periodic boundary conditions, t = 2. L1 and L1 errors of density q, k = 1.

Table 3.4
Euler equations

N L1 error L1 order L1 error L1order

10 6.34E � 04 2.88E � 03
20 7.83E � 05 3.02 6.14E � 04 2.23
40 7.95E � 06 3.30 5.76E � 05 3.41
80 9.42E � 07 3.08 7.23E � 06 2.99

160 1.14E � 07 3.05 8.27E � 07 3.13
320 1.38E � 08 3.04 1.19E � 07 2.79

q(x,0) = 1 + 0.2sin(px), v(x, 0) = 1, p(x, 0) = 1, periodic boundary conditions, t = 2. L1 and L1 errors of density q, k = 2.
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Example 3.4. We solve the one-dimensional nonlinear system of Euler equations (3.2). We use the following
Riemann initial condition for the Lax problem:
Fig. 3.
k = 1;
ðq; v; pÞ ¼ ð0:445; 0:698; 3:528Þ for x 6 0; ðq; v; pÞ ¼ ð0:5; 0; 0:571Þ for x > 0:
The computed density q, velocity v and pressure p are plotted at t = 1.3 against the exact solution. In Figs.
3.2–3.4, the solutions of RKDG using N = 200 cells are shown. In this case, we choose the TVB limiter con-
stant M1 = 0.1, M2 = 50 and M1 = 0.1, M2 = 200 for k = 1 and k = 2, respectively. We can see that the res-
olution of the contact discontinuity by RKDG is good for both the k = 1 and the k = 2 cases.
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1. Burgers equation. u(x, 0) = 0.5 + sin(px), t = 1.5/p, N = 80 points. Solid line: exact solution; squares: computed solution. Left:
right: k = 2.
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x

P
re

ss
ur

e

-5 -3 -1 1 3 5
0

1

2

3

4

x

P
re

ss
u

re

-5 -3 -1 1 3 5
0

1

2

3

4

Fig. 3.4. Lax problem. t = 1.3, 200 cells. Pressure. Solid line: the exact solution. Squares: numerical solution. Left: k = 1; right: k = 2.

362 J. Qiu et al. / Journal of Computational Physics 222 (2007) 353–373



J. Qiu et al. / Journal of Computational Physics 222 (2007) 353–373 363
3.2. Numerical tests for two-medium flows

In this section, we present the results of numerical experiments for various two-medium flows by the
RKDG schemes described in Section 2. In the present numerical experiments, 200 cells are used. Units for
density, velocity, pressure, length and time are kg/m3, m/s, Pa, m and s, respectively.

Example 3.5. This is an air–helium shock tube problem taken from [13], with the initial conditions as
Fig. 3.
right: k

Fig. 3.
right: k
ðq; v; p; cÞ ¼ ð1; 0; 1� 105; 1:4Þ for x 6 0:5; ðq; v; p; cÞ ¼ ð0:125; 0; 1� 104; 1:2Þ for x > 0:5:
The computed density q, velocity v and pressure p by RKDG schemes are plotted at t = 0.0007 against the
exact solution in Figs. 3.5–3.7. In this case, we choose the TVB limiter constant M1 = 0.1, M2 = 100 and
M1 = 0.1, M2 = 10,000 for k = 1 and k = 2, respectively.

The location of the material interface is captured correctly by both the RKDG schemes with k = 1 and
k = 2; the computed results are oscillatory free at the neighborhood of the interface by both the schemes and
are very comparable to the analysis. We also can see that the resolution of computed results by RKDG
schemes is better than that in [13].

Example 3.6. This is a problem of a shock wave refracting at an air–helium interface with a reflected rarefac-
tion wave. This example is also taken from [13]. The flow initial conditions are
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Fig. 3.7. Pressure for Example 3.5 by RKDG method. Solid line: the exact solution. Squares: numerical solution. t = 0.0007. Left: k = 1;
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ðq; v; p; cÞ ¼
ð1:3333; 0:3535

ffiffiffiffiffiffiffi
105
p

; 1:5� 105; 1:4Þ for x 6 0:05;

ð1; 0; 1� 105; 1:4Þ for 0:05 < x 6 0:5;

ð0:1379; 0; 1� 105; 5
3
Þ for x > 0:5:

8><
>:
The strength of the shock is pL/pR = 1.5 and initially located at x = 0.05, with the initial state ahead of the
shock as (q,v,p) = (1,0,1 · 105). The initial interface of air and helium is located at x*(0) = 0.5. The computed
density q, velocity v and pressure p by both the RKDG schemes with k = 1 and k = 2 are plotted at t = 0.0012
against the exact solution in Figs. 3.8–3.10. In this case, we choose the TVB limiter constant M1 = 10, M2 = 10
and M1 = 10, M2 = 30 for k = 1 and k = 2, respectively.

We can also see that the material interface is located at the correct cell by both the RKDG schemes with
k = 1 and k = 2. The computed results by both the schemes are very comparable to the analytical solution.
The computed results are oscillatory free at the neighborhood of the interface for density. The resolution of
computed results by the RKDG schemes is also much better than that in [13].

Example 3.7. We increase the strength of the right shock wave to pL/pR = 15 and the other initial conditions
are unchanged as for Example 3.6. This example is also taken from [13]. We thus have the following initial
conditions
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8. Density for Example 3.6 by RKDG method. t = 0.0012. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
k = 2.
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Fig. 3.10. Pressure for Example 3.6 by RKDG method. t = 0.0012. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
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Fig. 3.9. Velocity for Example 3.6 by RKDG method. t = 0.0012. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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ðq; v; p; cÞ ¼
ð4:3333; 3:2817

ffiffiffiffiffiffiffi
105
p

; 1:5� 106; 1:4Þ for x 6 0:05;

ð1; 0; 1� 105; 1:4Þ for 0:05 < x 6 0:5;

ð0:1379; 0; 1� 105; 5
3
Þ for x > 0:5:

8><
>:
The computed density q, velocity v and pressure p by both the RKDG schemes with k = 1 and k = 2 are
plotted at t = 0.0005 against the exact solution in Figs. 3.11–3.13. In this case, we choose the TVB limiter con-
stant M1 = 0.1, M2 = 500 and M1 = 0.1, M2 = 1500 for k = 1 and k = 2, respectively.

The interface is captured at the correct cell by both the RKDG schemes with k = 1 and k = 2. The
computed results obtained are fairly comparable to the analysis. The computed results are oscillatory free at
the neighborhood of the interface for density, but the density before the interface indicates some small degree
of smearing for both k = 1 and k = 2 cases. The resolution of computed results by RKDG schemes is,
however, still slightly better than that shown in [13].

Example 3.8. We consider the Euler equation (2.1) with the following Riemann initial conditions
ðq; v; p; cÞ ¼
ð1:3333; 0:3535

ffiffiffiffiffiffiffi
105
p

; 1:5� 105; 1:4Þ for x 6 0:05;

ð1; 0; 1� 105; 1:4Þ for 0:05 < x 6 0:5;

ð3:1538; 0; 1� 105; 1:249Þ for x > 0:5:

8><
>:
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Fig. 3.11. Density for Example 3.7 by RKDG method. t = 0.0005. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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Fig. 3.12. Velocity for Example 3.7 by RKDG method. t = 0.0005. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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Fig. 3.13. Pressure for Example 3.7 by RKDG method. t = 0.0005. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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Fig. 3.14. Density for Example 3.8 by RKDG method. t = 0.0017. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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Fig. 3.15. Velocity for Example 3.8 by RKDG method. t = 0.0017. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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Fig. 3.16. Pressure for Example 3.8 by RKDG method. t = 0.0017. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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This example is similar to Example 3.6, except that the initial status of the fluid on the right of the interface
has been changed. The computed density q, velocity v and pressure p by both the RKDG schemes with k = 1
and k = 2 are plotted at t = 0.0017 against the exact solution in Figs. 3.14–3.16. In this case, we choose the
TVB limiter constant M1 = 0.1, M2 = 1000 and M1 = 0.1, M2 = 60,000 for k = 1 and k = 2, respectively.

We can also see that the interface of the two-medium is located at the correct cell by both the RKDG
schemes with k = 1 and k = 2. The computed results by both the schemes are comparable to the analysis. The
computed results are oscillatory free at the neighborhood of the interface for density for both k = 1 and k = 2
cases. We also can see that the resolution of computed results by RKDG schemes is much better than that
shown in [13].

Example 3.9. We increase the strength of right shock wave to pL/pR = 15, while the other initial conditions
remain unchanged as for Example 3.8. We have the Riemann problems with the following initial conditions
Fig. 3.
right:

Fig. 3.
right:
ðq; v; p; cÞ ¼
ð4:3333; 3:2817

ffiffiffiffiffiffiffi
105
p

; 1:5� 106; 1:4Þ for x 6 0:05;

ð1; 0; 1� 105; 1:4Þ for 0:05 < x 6 0:5;

ð3:1538; 0; 1� 105; 1:249Þ for x > 0:5:

8><
>:
The computed density q, velocity v and pressure p by both the RKDG schemes with k = 1 and k = 2 are plot-
ted at t = 0.0007 against the exact solution in Figs. 3.17–3.19. In this case, we choose the TVB limiter constant
M1 = 0.5, M2 = 1000 and M1 = 1.0, M2 = 3000 for k = 1 and k = 2, respectively.
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17. Density for Example 3.9 by RKDG method. t = 0.0007. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
k = 2.
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18. Velocity for Example 3.9 by RKDG method. t = 0.0007. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
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Fig. 3.19. Pressure for Example 3.9 by RKDG method. t = 0.0007. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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We can also see that the material interface is located at the correct cell by both the RKDG schemes with
k = 1 and k = 2, and the computed results by both the schemes are comparable to the analysis. The computed
result depicts some overshoot behind the interface for the density for k = 1 case, and is oscillatory free at the
neighborhood of the interface for the density for k = 2 case. But the resolution of shock computed by RKDG
scheme with k = 1 is a little better than that by k = 2.

Example 3.10. This is a gas–water shock tube problem with very high pressure in the gaseous medium. The
initial condition are
Fig. 3.
k = 1;
ðq; v; p; cÞ ¼ ð1270; 0; 8� 108; 1:4Þ for x 6 0:5;

ð1000; 0; 1� 105; 7:15Þ for x > 0:5:

(

In this problem, the initial pressure in the gas is extremely high and thus, a very strong shock is generated in
the water. The computed density q, velocity v and pressure p by both the RKDG schemes with k = 1 and k = 2
are plotted at t = 0.00016 against the exact solution in Figs. 3.20–3.22. In this case, we choose the TVB limiter
constant M1 = 0.4 and M2 = 10 for both k = 1 and k = 2.

It is observed that the computed gas–water interface is located at the correct cell by both the RKDG
schemes with k = 1 and k = 2, and the computed results by both the schemes are comparable to the analysis.
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right: k = 2.
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Fig. 3.21. Velocity for Example 3.10 by RKDG method. t = 0.00016. Solid line: the exact solution. Squares: numerical solution. Left:
k = 1; right: k = 2.
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Fig. 3.22. Pressure for Example 3.10 by RKDG method. t = 0.00016. Solid line: the exact solution. Squares: numerical solution. Left:
k = 1; right: k = 2.
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Fig. 3.23. Density for Example 3.11 by RKDG method. t = 0.0001. Solid line: the exact solution. Squares: numerical solution. Left: k = 1;
right: k = 2.
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Fig. 3.24. Velocity for Example 3.11 by RKDG method. t = 0.0001. Solid line: the exact solution. Squares: numerical solution. Left:
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There are a little but well limited oscillations in the region of the interface for the density for both the k = 1
and k = 2 cases.

Example 3.11. We increase the energy of the explosive gaseous medium in Example 3.10. The initial condition
becomes
ðq; v; p; cÞ ¼ ð1630; 0; 7:81� 109; 1:4Þ for x 6 0:5;

ð1000; 0; 1� 105; 7:15Þ for x > 0:5:

(

The computed density q, velocity v and pressure p by both the RKDG schemes with k = 1 and k = 2 are plot-
ted at t = 0.0001 against the exact solution in Figs. 3.23–3.25. In this case, we choose the TVB limiter constant
M1 = 0.4, M2 = 300 and M1 = 0.4, M2 = 900 for k = 1 and k = 2, respectively.

We can also observe that the computed gas–water interface is located at the correct cell by both the RKDG
schemes with k = 1 and k = 2, and the computed results by both the schemes are comparable to the analysis.
There are exhibited a little but still well limited oscillations in the region of the interface for the density for
both the k = 1 and k = 2 cases.
4. Concluding remarks

We have investigated extensively using the discontinuous Galerkin (DG) finite element methods for two-
medium flow simulations in one-dimension, having incorporated a conservative treatment of the moving
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material interface. Numerical results for both gas–gas and gas–water flow in one-dimension are provided to
show the characteristic behavior and applicability of this procedure to a wide range of conditions. The pro-
posed method has been found to be able to provide the correct interface location and still reasonable solution
with well-limited oscillations in the interface region. Further research on the efficient implementation of these
methods for multi-dimensional problems is ongoing.
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